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ABSTRACT

Four chlorofluoropolymer systems that satisfactorily met the

criteria for classification as self-extinguishing, in accordance

with the procedures of Category A, MSC-PA-D-67-13, were developed.
Three of these systems consisted of Halar (a copolymer of

chlorotrifluoroethylene and ethylene) and tin-based flame retard-

ants. The fourth system was a copolymer of chlorotrifluoro-

ethylene and tetrafluoroethylene with no flame retardants.added. Pro-

duction of fibers from all four candidates, by melt extrusion,
was demonstrated. Fibers produced from the chlorotrifluoroethylene-

tetrafluoroethylene copolymer showed the most promise.
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FLAME RESISTANT FIBROUS MATERIALS DEVELOPMENT

CONTRACT NO. NAS 9-12257

INTRODUCTION

Historically, progress in advanced technical disciplines has been
dependent on the rate of development of special materials of con-
struction. The advent of the space age has markedly accelerated
this rate. Specifically, the need for new flame resistant fabrics
for applications such as spacesuit cover layers and flight cover-
alls has become apparent.

The fibers used in these constructions must meet the NASA require-
ments of non-flammability in enriched oxygen atmospheres, in addi-
tion to the fiber strength, weight per unit volume and heat resist-
ance criteria. Thus far only inorganic fibers have qualified.
However, they lack the abrasion resistance, durability and "hand"
of common organic fibers such as nylon.

This report summarizes an effort to develop flame resistant fiber
candidates from chlorofluoropolymers. In Phase I several candidates,
with and without flame retardant additives, were screened. Pre-
liminary fiber extrusion tests were also conducted. Phase II was
devoted to developing production techniques for and determining the
engineering properties of a new chlorofluoropolymer that showed
promise as a flame resistant material of construction.

SUMMARY

Four chlorofluoropolymer systems that satisfactorily met the
criteria for classification as self-extinguishing in an environment
of 70% oxygen and 30% nitrogen at 6.2 PSIA total pressure were
developed. The flammability tests were conducted by NASA in
accordance with the procedures of Category A, MSC-PA-D-67-13.

These systems included:

- Halar (copolymer of chlorotrifluoroethylene and ethylene)
plus 15% stannic oxide hydrate.

- Halar plus 10% stannous oxalate.

- Halar plus 5% stannous phosphate.

- A copolymer of chlorotrifluoroethylene (CTFE) and tetra-
fluoroethylene (TFE) in the composition range of 40 to
70 mol % CTFE and 60 to 30 mol % TFE. This material, re-
ferred to as the ECS copolymer, contained no stabilizers
or flame retardant additives.

Production of fibers from all four candidates by melt extrusion
was demonstrated. Fibers produced from the ECS copolymer showed
the most promise.
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A granular polymerization process was developed and 
used to pro-

duce copolymers of CTFE and TFE for evaluation of engineering pro-

perties. Copolymers containing 40-60 mol % of CTFE exhibited

the outstanding electrical and chemical resistance properties

characteristic of fluoropolymers.

CONCLUSIONS

A completely organic polymer has been developed which 
passes the

NASA flammability requirements in enriched oxygen atmospheres

when tested in accordance with MSC-PA-D-67-13. This polymer has

been converted into multifilament yarns by conventional melt-

extrusion techniques. Additional research will be needed to

optimize fiber spinning and orientation techniques 
so as to obtain

low denier, high tenacity fibers for fabric preparation.

Flame-retardant additives have been discovered that permit Halar

a commercial polymer made by Allied Chemical Corp.,-to successfully meet

the NASA flammability requirements specified in this contract.

Preparation of uniform, high strength fibers from 
these blends has

not been accomplished to date.

RECOMMENDATIONS

Develop spinning and drawing techniques for converting ECS copolymers

into fine denier, high tenacity multifilaments.

Pursue development of Halar fiber for those spacecraft applications

where less stringent oxygen environments have been specified.

EXPERIMENTAL - PHASE I

A. Objectives
The current flame resistant fibrous materials for use in

oxygen environments are inorganic fibers. Although these

fibers have met the NASA requirements for non-flammability

in enriched oxygen atmospheres, they lack the abrasion re-

sistance, durability and "hand" of conventional organic

fibers. All known organic fibers had been found to be un-

satisfactory when tested for flammability in accordance with

the upward propagation test per Category A, MSC-PA-D-67-13.

The objectives of Phase I were to first develop one or more

organic polymers that would meet the non-flammability require-

ments and then to prepare fibrous structures from the best

polymer candidate for applications in spacecraft as. spacesuit

cover layers, flight coveralls, restraint webbings, storage

containers, etc.

To be considered acceptable for these applications, the fiber

candidate should, in addition to meeting the non-flammability

criteria, have the following properties:
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Physical Properties:

1. Denier Required 2-10
2. Breaking Tenacity gpd 4-6
3. Elongation, % 10-30

4. Specific Gravity 1.3-2.1
5. Stiffness, gpd 10-30
6. Resistance to Heat Shall not degrade at 4000F

Other Requirements

1. Offgassing acceptable per MSC-PA-D-67-13.

2. Toxicity acceptable per MSC-PA-D-67-13.

3. Odor acceptable per MSC-PA-D-67-13

4. Effect of organic solvents: shall not be affected by
common solvents.

5. Effect of vacuum: shall not have a weight loss exceeding
10%6when the fiber is subjected to a vacuum pressure of
10 torr for 24 hours, nor shall it show signs of loss
of flexibility, cracking or brittleness after subjection.

B. Technical Approach

The technical approach that was taken to achieve the Phase I

objective of developing the polymer candidate was to investigate
fluoropolymers with and without flame-retardant additives. It

was reasoned that the stringent requirements of non-flammability
in enriched oxygen atmospheres could be better met by chloro-

carbon or chlorofluorocarbon-based polymeric structures rather

than by hydrocarbons. Early in the contract it was established
that the common fluorocarbon polymers could not meet the test

criteria for non-flammability per MSC-PA-D-67-13. For this
reason, various flame-retardant additives were incorporated
into the polymers at different concentrations to enhance flame-

retardancy. The selection of the flame-retardants was based
on the known theories of flame retardancy in halogenated

polymers with particular emphasis placed on antimony, nitrogen,
phosphorous and tin based additives, keeping in mind the generally
synergistic action of these compounds with halogenated moieties.

Phase II of the study was originally intended to provide
textile fabrics prepared from the best polymer candidate
developed in Phase I. Since the polymer developed in Phase I

was only on test tube scale, this phase was subsequently
modified, with the approval of NASA, to be the development of

a pilot plant scale polymerization process to produce pound

quantities of polymers for engineering property measurements.

C. Candidates

The Polymer candidates developed and tested for flammability

per MSC-PA-D-67-13 could be grouped under three broad catagories:

(3)



i. Commercial or developmental polymers without any flame

retardants. These are listed below:

a. Polychlorotrifluoroethylene (PCTFE)

b. Chlorotrifluoroethylene-Vinylidene Fluoride

Copolymer (VK)
c. Chlorotrifluoroethylene/Vinylidene Fluoride/

Tetrafluoroethylene Terpolymer (TVS)

d. Polytetrafluoroethylene (PTFE)
e. Copolymer of Chlorotrifluoroethylene-Ethylene

(Halar®).
f. Copolymer of Tetrafluoroethylene-Ethylene (Tefzel)

g. Tetrafluoroethylene/Hexafluoropropylene Copolymer
(FEP )

h. Tetryluoroethylene/Perfluorovinyl-alkoxy Copolymer
(PFA-)

i. Hexafluoroisobutylene-Vinylidene Fluoride Copolymer
(CM-1)

2. Halar , VK, TVS, PCTFE, and PTFE with 5-15% of flame

retardant additives. Only in the case of Halar@ was there

a significant improvement in non-flammability when additives

were incorporated. The additives that were evaluated were:

- Tetraphenyl Tin
- Barium Chloranilate
- Hydrated Stannic Oxide
- Thermolite 35
- Stannous Oxalate
- Tetramethyl Thiuram Disulfide
- N,N'-Diphenyl-p-phenylene Diamine

- 2,6-di-tert-butyl-4-methyl Phenol
- Antimony Oxide
- Red Phosphorous
- Chlorinated Polyphenyls
- Diphenylisodecyl Phosphite
- Triphenyl Phosphite
- Trilauryl Phosphite
- Weston TP-24 (aromatic phosphite of 23.5% P)
- Weston 465 (9.2% P)
- Weston 467 (7.7% P)
- Alumina Trihydrate
- Stannous Phosphate, Tribasic
- Stannous Pyrophosphate
- Di-n-propyltin Dichloride
- Triphenyl Tin Choride
- Tricresylphosphate

3. Research Polymers: For the purpose of flammability testing,

small quantities of four experimental polymers were

synthesized and attempts were made to synthesize 
two

others. These were:

a. CTFE ethylene 1:1 copolymer synthesized at very low

(-78 C) temperatures.
b. Chlorinated Halar@
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c. CTFE/TFE copolymers of different compositions
(ECS)

d. CTFE/vinyl phosphonic Acid copolymer
e. Stereoregular PCTFE
f. CTFE-rich Halar® (55 to 75 mole % CTFE)

The results of the above three-pronged approach are summarized

as follows:

1. Stannic oxide hydrate, stannous oxalate and tribasic

stannous phosphate were found to render Halar@ self-ex-

tinguishing per MSC-PA-D-67-13. Of these stannous phos-

phate was the most effective with levels as low as 5%

sufficient to impart nonflammability.

2. Without the use of any additives the copolymer of CTFE-TFE

in the composition range of 40 to 70 mole % CTFE and 60 to

30 mole % TFE passed the flame test. Polymers outside this

composition range were not self-extinguishing.

3. Little improvement in flame-resistant was achieved by
chlorinating Halar@ up to about 30% level of chlorination.

4. Attempts to prepare stereoregular PCTFE were unsuccessful.

5. Halar@ with the three effective additives could be melt-

spun into fibers. However, additional work would be nec-

essary to achieve the desired levels of mechanical strength.

6. The ECS copolymers could be spun into multi-filaments and
cold drawn. They passed all NASA flammability
requirements and gave off extremely low levels of smoke.

D. Preparation of Polymer Candidates

Halar® Blends with Flame-Retardant Additives:
Commercial grade Halar" powder of 0.5 to 4.0 M.I. was first
blended with the additives in a ball-mill for 6 hours, then
melt-blended in a Brabender Plasticorder for 10 minutes at 260C

at a screw speed of 50 RPM. No severe degradation or cross-

linking of the polymer was noted as evidenced by constant tor-

que values during the mixing period.

Chlorinated Halar®:
Finely pulverized unstabilized Halar was slurried in a large

excess of carbon tetrachloride and chlorinated for four hours

at 650C in an aqueous suspending medium of 37% HC1. Ultra-

violet irradiation from a 500 watt mercury vapor lamp was

admitted into the reaction flask during the chlorination. An

azo photo-sensitizer was present in the organic phase during

the reaction.

Chlorine and hydrogen analysis of the resultant polymer showed

that the extent of chlorination was about 30%. The polymer

melting point dropped from 2420C to 2180C and the crystallinity

decreased about 25%.
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Very Low-Temperature Polymerized CTFE/Ethylene Copolymer:

500 grams of STFE were condensed into a 1 liter flask main-

tained at -78 C and ethylene gas was bubbled slowly through

the liquid CTFE. One gram of tri-n-butylboron activated with

a molal equivalent of gxygen was introduced and the reaction

was cagried out at -78 C to obtain 90 grgms of polymer melting

at 261 C with a melt index of 2.4 at 300 C.

Stereoregular PCTFE (Attempted Synthesis)

Liquid CTFE monomer at -g8 C wag reactsd with 8 xygen-activated
tri-n-butyl boron at -78 C, -50 C, -20 C and 0 C. Polymeriza-

tion did not occur at any of these temperatureS.

CTFE was reacted at -78
0 C using -irradiation from a Co

6 0

source at a dose rate of 0.20 megarads per hour for 24 hours.

Low molecular weight grease rather than solid polymer was

obtained. Lowering the dose rate to 0.05 megarad per hour

for 24 hours still yielded only a grease.

The binary catalyst system of tri-isobutylaluminum and tetra-

isogropyl t tanate in methylene chloride solvent was used at

-30 C and 0 C at Al/T mole ratios of 0.5, 1.0 and 2.0. Only
low melting (140 -145 C) low molecular weight polymers were pre-
pared at 25 C with an Al/Ti mole ratio of 2:1.

CTFE/Vinylphosphonic Acid Copolymers
CTFE was copolymerized in an autoclave with 3 mole % of vinyl-

phosphonic acid at O°C using trichloroacetylperoxide 
as a free-

radical initiator. Copolymers containing about 10 mole %

acid resulted. The polymer was amorphous and tacky with a

softening temperature of 55 C.

CTFE/TFE Copolymers

The preparation of a typical copolymer is illustrated by the

following procedure for a 50/50 copolymer:

Into a 1-gallon stainless steel autoclave was charged 2 liters

of deaerated 1,1,2-trichloro-1,2,2-trifluoroethylene. The

reactor was pealed, and evacuated. 500 grams of chlorotri-

fluoroethylene were condensed in, followed by enough tetra-

fluoroethylene gas to obtain a liquid phase composition of

50 mole % of each monomer. An organic peroxide initiator

dissolved in 100cc of chloroform was introduced and the re-

action was carried out for 6 hours. At the end of this period,

the reactor was vented and evacuated. The polymer was dis-

charged as a thick slurry in the solvent. It was filtered,

washed with excess methanol and dried for 20 hours to obtain

300 grams of polymer melting at 242
0 C. The polymer analyzed

to approximately 50 mols % of each monomer and had a melt in-

dex of about 4.2 at 300 C and with a load of 2160 grams.

E. Test Specimen Preparation
5" x 3" x 10 mils thick films were compression molded at about

30°C above the polymer melting temperatures in a Carver press

using a 10 mil stainless-steel die. The molded film was cooled
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in air rather than quick-quenched in water in order to avoid
or minimize surface roughness due to excessive shrinkage. The
use of any mold-release agents was avoided as much as possible
so as to eliminate any possible effect they might have on
flammability. The compression molded films were labelled and
mailed to MSC (Houston) for upward propagation rate test per
MSC-PA-D-67-13.

F. Test Procedures

Upward Propagation Rate Test
The description of this test as published by NASA is shown in
Appendix I.

Melt Index
An electrically heated melt index apparatus with a Hastaloy
barrel and 1/16" carbon-steel die was used to measure melt
indices 8 f different polymers at test temperatures (generally
about 30 C above the polymer melting temperatures). The re-
sults were expressed as grams flow per 10 minutes at the
specified temperature and load (stress).

Limiting Oxygen Index
These values were measured on 5" x 1/4" x 1/8" strips of com-
pression-molded polymer plaques per ASTM test procedure D 2863-70
using a CSI Oxygen Index Analysis fitted with a continuous oxygen
monitor. The results were averaged for 10 specimens for each
sample.

Differential Scanning Calorimetry (DSC)
Polymer melting points, crystallization points, and crystallinity
were measured using a Perkin Elmer DSC unit at heating and
cooling rates of 20 /minute.

Thermal Gravimetric Analysis (TGA)
Thermal stability of selected polymers were measured in nitrogen
and in air using both isothermal and programmed heating in a Ca
Balance TGA apparatus.

Thermomechanical Analysis (TMA)
Measurement of longitudinal elongation and shrinkage of spun
filaments as a function of temperature was s udied using a
Perkin Elmer TMA unit at heating rates of 10 /minute in helium.
The particle size measurement of flame-retardant additives
(stannous oxalate and stannic oxide hydrate) was carried out
using a Coulter Counter. The tensile properties of drawn and
undrawn filaments were measured using an Instron tensile
testing machine. The microstructure of polymers and copolymers
was determined by elemental analysis for carbon, hydrogen,
chlorine and, in a few cases, fluorine. Information on mole
percent ethylene bloc sin Halar and inchlorinated Halar was
obtained using near-infra-red spectroscopy (Ref. 3). Filament
spinning trials were performed using (a) a ram extruder and
(b) a 1/2" dia. 22:1 L/D Reifenhauser Screw Extruder.

(7)



G. Results and Discussion
Table I lists the flammability test data per MSC-PA-D-67-13

on various Halar -additive blends. It is seen that three

inorganic tin compounds, namely stannic 
oxide hydrate (SnO .

x H 0 where x = 1 to 1.5), stannous oxalate (Sn (COO)2) anA
tri asic stannous phosphate (Sn (PO )2 x H 0 where x = 1 to

2) rendered Halar self-extinguishiAg. It s known from flame-

retardation of other polymers such as PVC, polyethylene 
and

polypropylene that hydrated stannic oxide 
is as effective

a flame-retardant as antimony oxide. However, in the case

of Halar, stannic oxide hydrate was much more effective 
than

antimony oxide. The most effective flame-retardant additive

was tribasic stannous phosphate. This led to the expectation

that there might be a tin-phosphorous-halogen synergism at

work. This postulate could not be sustained when stannous

pyrophosphate was substituted for the tribasic stannous 
phos-

phate. The former failed to render Halar® self-extinguishing

even at 10% levels while the latter sufficed at as low as 50%.

It is reasonable to expect that the water of hydration in

both SnO - x H O and Sn (PO ) x H 0 might be playing a part

in the fame r tardatioA meciaism.
2 Even though stannic oxide

hydrate loses almost a mole of water per mole when 
heated to

225 0 C, some of the water of hydration is still present even at

475C. Tribasic stannous phosphate might retain higher levels

of water at these higher temperatures, thus making it the 
most

effective additive. However it is difficult to explain the

results completely from the point of view of the retention of

water of hydration. In the case of stannous oxalate, formation

of CO at the combustion temperatures might provide a cooling

and q enching zone, in addition to the fire retardancy con-

tributed by stannous halides and other volatile stannous 
com-

pounds that may have formed during burning. 
The results showed

that organotin compounds were totally ineffective as fire

retardants in contrast to the inorganic tin salts. Compression-

molded films from the blends of Halar® with the three tin salts

were free of bubbles or degradation and no difficulties were

encountered either in melt-blending or molding thin films.

Table II shows the limiting oxygen index numbers measured on

Halar blends with the three tin compounds as well as Sb 0O

and red phosphorous. These tin compounds not only rendgrad

Halar self-extinguishing in the NASA flame test but also

improved its oxygen index considerably.

Halai blends with all three tin salts, while passing the flame

propagation test, give off substantial amounts of 
smoke and

soot during burning.

Table III presents test data on flammability of polymers 
with-

out any flame-retardant additives. The CTFE/TFE copolymers are

listed separately in Table III. All the polymers listed failed

the propagation rate test. It is interesting to note that

both PCTFE and PTFE, with oxygen index values of 98 and 95

respectively, failed to meet the criteria for non-flammability

in the NASA test.
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Synthesis data on CTFE/TFE copolymers are shown in Table IV.

Polymers of any desired composition or molecular weight could
be easily prepared by adjusting feed monomer composition and
chloroform concentration. Table V listed the test results

on upward propagation rate per MSC-PA-D-67-13. The range of
compositions over which these copolymers passed the test
criteria for classification as self-extinguishing was
approximately 40 to 70 mole % CTFE and 60 to 30 mole % TFE.
These copolymer compositions provided, for the first time, a
completely organic material capable of being made into fibrous
structures, which was serviceable in enriched oxygen atmos-
pheres. These copolymer were surprisingly clean burning in
the sense that very little smoke or soot was emitted when they
were burned. Normally, the copolymer melted and flowed away.
The drops self-extinguished as they fell.

Since both PCTFE and PTFE failed the flammability test where-
as the copolymers passed, it was probable that one reason for
this could be a difference in the thermal degradation mechanisms
of the copolymer and the two homopolymers. To gain some insight
into this, samples of Halar , CTFE/TFE copolymer, PCTFE and PTFE
were analyzed by TGA in oxygen and nitrogen atmospheres and the
results compared in Table VI. Halar , PCTFE and PTFE lost more
weight in oxygen than in nitrogen, while the copolymer lost
less weight in oxygen than in nitrogen. This indicated a
possible difference in the mode of decomposition of the co-
polymer. Pyrolysis gas chromatography-mass spectrometry on
PTFE, PCTFE and the copolymers showed that the major degradation
products were:

Polymer Major Degradation Products

PCTFE CO2 , CF4 , CF3C1 Carbon

PTFE CO2 , CF4, C3F8 , C4F10
CTFE/TFE CO2 , CF4, CF3C1

H. Preliminary Fiber Production - Ram Extruder

Melt-spun Fibers From HalarO/Additive Blends
This work was done in a ram extruder using very finely powdered
additives in Halar® blengs. Halar® + 15% SnO2* x H O blends
were ram extruded at 265 C using a 19 mil die. Melt draw-down
was limited due to non-uniformity of additive dispersed in the

polymer. The extrudate was capable of being drawn 5:1 at 125
0C.

Fiber properties were: tenacity 0.76 gpd; UE; 2.1% and TM: 34.2
gpd.

Halar®+ 10% stannous exalate
Blends were ram-extruded using a 19 mil die. Examination of

fiber showed opaque and transparent areas indicating non
uniformity of dispersion. The fiber was drawn 5.3:1 at 125 C.
Non-uniform draw was a problem. The fiber properties were
tenacity 1.19 gpd; UE 4.65% and TM; 41.6 gpd. Halar + 10%

(9)



stannous phosphate blends were extruded as before. The
fiber was capable of being drawn but premature breaks due
to surface non-uniformity resulted in very poor draw-
ratios and weak fibers.

After many ram extruder spinning trials with different
levels of these three additives in Halar , it was obvious
that under the conditions of our spinning experiments high
degrees of melt draw-down and orientation could be
attained to produce fibers of satisfactory mechanical
strength and fineness of diameter.

Ram-extruder spinning trials were carried out on various
CTFE/TFE copolymers listed in Table VII. Based on these
results the following conclusions could be reached.

1. Resins of melt index less than about 1.0 could not be
processed due to melt fracture and extrudate inability
to draw-down in the melt.

2. The greatest melt draw-down potential was exhibited
by 50/50 copolymers with melt index of about 4 but hot
drawing of this fiber was not possible. Cold drawing
about 5:1 yielded tenacities of less than 0.75 gpd.
A typical set of properties for this fiber would be:
UTS = 0.52 gpd; UE = 16% and TM= 11.6 gpd.

I. Screw Extruder Tests

Screw Extruder Spinning Trials on CTFE/TFE Copolymers
All experiments were performed utilizing a 1/2" dia. 22:1
L/D Reifenhauser screw extruder. Figure I illustrated
the essential features of the spinning assembly and the
location of the various temperature zones and pressure
gauges. Extruder components were constructed from stain-
less steel 416 and chrome plated to conform to recommended
materials of construction. Filter screens, pressure
gauges, and metering pumps were constructed from Hastaloy "C".
This material has a high coefficient of expansion and poor
polymer-lubricationg characteristics. Thus, the pump toler-
ances were increased and the pump face and backing plates
were chrome plated to prevent scoring.

Figure I illustrated the essential features of the spinning
assembly and the locations of the various temperature zones
and pressure gauges. Polymer was carried and mixed by a
gradual transition screw with a compression ratio of 3:1,
through a breaker plate containing 2-100 mesh Hastaloy "C"
screens, and into the block assembly. The melt passed
through the block where pressure was determined and flowed
to the Zenith metering pump. The pump relayed the polymer
at a constant rate, through the block and into the spin pot
where it diverged over a filter screen pack containing 1-80
mesh and 3-100 mesh Hastaloy "C" screens. The pressure was
recorded in the channel connecting the metering pump and
filtering system. The melt passed through the screen pack and
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converged through a short channel where the melt temperature
and die pressure were measured. The melt then diverged over

the die plant and was forced through the die orifice into

the quenching media where the molten filaments were 
solidified.

Two quenching systems were employed in fiber preparation. 
One

system was used for yarn and the other for monofil production.

The quench stack assembly as shown in Figure I was employed
for yarn production.

Upon exiting the die the molten yarn passed first through a

10" heated sleeve maintained at 240 C. The purpose of this

heated sleeve was to maintain the yarn in a molten state

which was necessary to achieve uniform melt draw-down with-

out appreciable orientation. After passing through the

sleeve the fiber was quenched by air traveling first per-

pendicular to the yarn path and then concurrently with the

yarn. The air velocity and temperature were recorded and con-

trolled to insure a stable process. The water system used to

quench monofils is illustrated in Figure III.

Monofil traveled 20" through air before quenching. In the

zone between the die and water level the monofil diameter was

reduced to the Sesired level before quenching in water main-

tained at 45-50 C. Decreasing this distance resulted in a

non-uniform thinning, and a decrease in water temperature
lead to the formation of voids within the fil. It was possible

to decrease the distance between the de and water level by
increasing the water temperature to 76 C without effecting the

quality of the monofil. Two take up systems were employed.
One system, Figure II, was used in yarn production while the

other, Figure III, was utilized for monofil.

Upon exiting the quench stack, the yarn passed through a drip

gate and contacted a lube roll to pick up spin finish which

was required to reduce the yarn's static charge and to reduce

sliding friction between the yarn and draw pin. The yarn then

passed over two rolls, the second of which was traveling 1%
faster to insure uniform tension of filaments on the take up

package. The speed of these rolls in conjunction with the
extruder throughput determined the undrawn fiber denier.

After passing through the water bath the fil passed through

a nip roll assembly. The surface speed of this assembly in

conjunction with the flow rate of molten polymer controlled
the monofil denier. The film was collected by means of a Leesona

winder. The majority of drawing experiments were performed

using a heated pin/block assembly which was referred to as air

drawing. This procedure was used for all yarns and monofil

15 mils. For monofil 15 mils a heated oil bath containing
a submerged pin was employed to insure uniform heat transfer.

This system was referred to as oil drawing. Air drawing as
used for yarn and low diameter monofil was illustrated in

Figure IV.
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The undrawn fiber was pulled off the end of the package in-

troducing 1/2 twist per foot and passed through a tension

gate. This gate served primarily as a fiber 
guide to the

pretensioning rolls whose diameter 
was 1% less than the

feed godet. The pretensioning rolls and feed godet rotated

at the same RPM but consequently the fiber was 
under the

required tension to prevent slippage. The fiber was wrapped

over the feed godet, heated pin, which controlled 
the

position of the fiber neck, and 
passed over the surface of

a 7" heat block. The fiber was then wrapped on the take up

godet and passed to the winder where it was collected. The

fiber draw ratio was determined by the difference 
between the

surface speed of the take-up and feed godets. Oil drawing

as illustrated in Figure V was used to monofil drawing for

monofils 15 mils in diameter.

The undrawn monofil was rolled off the package introducing

no twist and through a tension gate. The fiber was then

wrapped on the fed godet and draw pin which was 
submerged

in the oil bath. It then passed over several guides to the

take up godet, through a wash bath to remove 
oil and was

collected. Draw ratio was again determined by the speeds 
of

the feed and take up godets.

The results of the multifilament spinning trials 
on 1.2 to

1.5 M.I. resins were:

1i. All the reginswere extrudable with little difficulty 
at

310 - 320 C using a 30 hole spinneret of 30 mils

diameter.

2. Shear rates of about 125 sec-1 yielded extrudates 
free

of melt-fracture.

3. Samples collected by air-quenching could 
not be drawn

hot or cold after take-up.

4. Ice water quenching appeared to prevent total 
yarn crystal-

lization but drawing after take-up was not 
uniform re-

sulting in premature breaks and limited draw ratios 
of

less than 2:1.

5. Filament deniers were higher than 200 mainly 
due to the

fact that melt draw-down ratios were low. Additional

work will be necessary to produce five denier 
fibers.

6. The effect of molecular weight distribution 
on melt-

spinning in screw extruder was studied by extruding 
two

copolymer (50/50 C/T) resins each of 4 M.I. 
but one of

relatively narrow and the other of wider molecular 
weight

distributions. Both resins extrgded 
easily to give melt-

fracture free extrudates at 300 C. Further work needs to

be done to improve melt draw-down and 
ability to cold-draw.

Tables VIII and IX presented the results of isothermal and

programmed TGA in air and in nitrogen 
of filaments prepared

from CTFE/TFE copolymers of various 
compositions and melt-
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indices. Thermal analysis of the CT copolymers of varying
compositions and melt indices indicated the following:

1. The melting point and the thermal and oxidative stability
increased with the TFE concentration.

2. In N , the higher the M.I., the lower the stability, as
expe ted. In air, the opposite was shown: the apparent

weight loss was lower for the higher M.I. samples. This

was, however, misleading, since in reactive atmospheres

weight gain and loss occurred simultaneously, and the

lower viscosity copolymers oxidized more readily.

3. Heat treatment at 350°C was not favorable. The two co-

polymers (CT-27 and CT-31) used in the quenching, studies,
showed insignificant changes when reheated after quenching,
but the melting peak shape became broader, its le8gth
shorter and the T lower upon reheating after 350 C

quenching (most lmkely duS to morphological changes).
The isothermal TGA at 350 C, in both media, showed small

weight loss (less than 1%), but also bubble formation,
which was detrimental for drawing. Apparently 350 C was
too high a temperature for processing.

To understand why difficulty was encountered in drawing above
room temp rature, thermomechanical analysis (TMA) was carried

out at 10 C/minute in helium from room temperature to 1500C.
The data indicated poor uniformity; The amount of shrinkage
or elo 8gation 8 f the samples differed significantly; e.g., in
the 40 C to 95 C temperature range, one piece of filament
showed a 0.22% shrinkage while another show8 d a 1.3% elongation.

Over the studied interval (from 25 C to 150 C) the ratio of
the maximum and minimum elongation was 6:1. Upon heating the

lengths of the fibers become non-uniform. This was probably
one of the factors which caused difficulty in drawing. Table
X showed the detailed results of the TMA analysis.
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TABLE I

RESULTS OF FLAMMABILITY TESTS

Silicone Ignitor; 6.2 PSIA 70% 02 30% N2

Flame Propagation

Sample Rate (inches/sec.)

HALAR 4 5% Stannous Oxalate 0.12

HALAR - 10% Stannous Oxalate 0.02

HALAR - 5% DM-8277 0.25

HALAR - 10% DM- 8277 0.20

HALAR - 5% Tetraphenyltin 0.12

HALAR - 10% Teltaphenyltin 0.45

HALAR - 5% Hydrated Tin Oxide 0.12

HALAR - 10% Hydrated Tin Oxide 0.012 (SE)

TVS - 10% Hydrated Tin Oxide 0.217

TVS - 10% Tetraphenyltin 0.625

HALAR - 5% Barium Chloranilate 0.18

HALAR - 5% Thermolite 35 0.17

HALAR - 5% Tetramethyl Thiuram

Disulfide 0.11

HALAR - N,N-Diphenyl-p-phenylene
Diamine 0.38
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TABLE I - Continued

SAMPLE Flame Propagation Rate

(Inches/Sec.)

HALAR - 7.5% Sn02 . xH20 0.200

HALAR - 10% Sn0 2  . xH20 0.217

HALAR - 15% Sn0 2  . xH 2 0 0.03 (SE in 3")

HALAR - 5% Sb 2 0 3  
0.263

HALAR - 10% Sb203 0.227

HALAR - 10% Sb 2 03  0.263

HALAR - 15% Sb 2 03 0.357

HALAR - 15% Sb 2 03 0.217

HALAR - 5% SnO2 . xH 2 0 - 5% Sb203 0.200

HALAR - 5% Sno 2 . xH 2 0 - 5% Red Phosphorous 0.384

HALAR - 5% Sn0 2 . xH20 - 10% Aroclor 0.142

HALAR - 5% 2,6-di-tert-butyl-4-methyl 0.217

phenol
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TABLE I (cont'd)

Sample Flame Propagation Rate ("/Sec)

HALAR - 5% Di-m-propyltindichloride 0.238

HALAR - 10% Di-n-propyltindichloride 0.247

HALAR - 15% Di-n-propyltindichloride 0.250

HALAR - 10% Triphenyltin Chloride 0.450

HALAR - 10% Tricresylphosphate 0.625

HALAR - 4% Stannous Phosphate 0.022

HALAR - 3% Stannous Phosphate 0.166

HALAR - 20% Stannous Phosphate 0.33

HALAR - 1% Stannous Phosphate 0.25

HALAR - 5% Stannous Pyrophosphate 0.25

HALAR - 10% Stannous Pyrophosphate 0.20
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TABLE I (contd)

Sample Flame Propagation Rate

(inches/sec.)

HALAR - Diphenylisodecyl Phosphite 0.227

HALAR - Trilauryl Phosphite 
0.263

HALAR - WESTON TP-24 
0.263

HALAR - WESTON 465 
0.227

HALAR - WESTON 467 
0.238

HALAR - 10% Sn02.x H 2 0 
0.083

PCTFE - 10% WESTON TP-24 
0.389

PCTFE - Trilauryl Phosphite 
0.20

PCTFE - 10%/ Sn02.x H20 
0.227

HALAR - 10% Sn0 2 .x H 2 0 
SE-3"

HALAR - 10% Stannous Oxalate SE-2.5"

HALAR - 10% Stannous Oxalate 
SE-3"

HALAR - 15% Stannous Oxalate SE-2"

HALAR - 15% Stannous Oxalate SE-1-3/4"

HALAR - 15% Stannous Oxalate SE-1-1/2"

HALAR - 10% Stannous Phosphate SE-2-1/4"

HALAR - 10% Stannous Phosphate SE-2-1/4"

HALAR - 15% Stannous Phosphate SE-2"

HALAR - 5% Stannous OXalate - 5% Sn0 2 .xH20 SE-3"

Note: 1. WESTON TP-24, 465 and 4(7 are orgnophosphorous flame-retardants

Supplied by Weston Chemical Corporation and 
contain 23.5%,

9.2% and 7.7% phophorous respectively.

2. SE: Self-Extinguishing
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TABLE II

Effect of Additives on Oxygen Index of HALAP

I. OI of HALAR Control = 58

2. At 5% Levels:

Additive 0I

Hydrated Tin Oxide 80.5

Stannous Oxalate 77

Stannous Phosphate, Tribasic 87

Stannous Pyrophosphate 80

Antimony Trioxide 69

3. At 10/o Levels:

Additive 0I

Hydrated Tin Oxide 84

Stannous Oxalate >95

Stannous Phosphate, Tribasic >95

Stannous Pyrophosphate 82

Antimony Trioxide 70

Red Phosphorous 44
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TABLE III

NASA FLAMMABILITY TEST RESULTS

Polymers Without Additives

Flame Propagation

Polymer Rate, Inches/Second Comments

PCTFE 0.263 B-

VK 0.20 B-

TVS 0.277 B-

,-80 0.185 B-

TIALAR 0.217 B-

C-E-C 0.294 B-

CM-1 0.214 B-

T-E 0.333 B-

FEP 0.227 B-

PFA 0.227 B-

XP-C1 0.277 B-

B- Entire 5" length of film specimen completely burnt.
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TABLE IV

SYNTHESIS DATA ON C/T COPOLYMERS

Copolymer
Composition M.Pt. 1
(Molar Ratio C/T) (00C) Cs  MI** Extrudate at (2-200 Sec.

45/55 247 3.0 0.19 Slight melt fracture at 320 0 C.

45/55 247 4.0 0.35 Free of melt fracture at 320 0 C.

45/55 245 6.0 0.64 Slight melt fracture at 320 0 C.

50/50 240 5.0 0.61 Free of melt fracture at 3000C.

50/50 240 7.2 1.60 Free of melt fracture at 300
0 C.

50/50 238 9.4 3.5 Free of melt fracture at 300
0 C.

55/45 232 3.0 0.50 Slight fracture at 300
0 C.

55/45 232 6.0 1.60 Smooth extrudate at 300
0 C.

60/40 230 3.0 0.50 Smooth extrudate at 300
0 C.

60/40 227 7.5 4.3 Melt fracture at 3000 C.

70/30 221 3.2 1.75 Severe melt fracture at 300
0 C.

*Conc. of chain-transfer agent (cc/100 gms total monomer)

**MI: Melt Index at 300oC/2,160 gms.

Shear Rate
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TABLE V

UPWARD FLAME PROPAGATION RATE TEST RESULTS ON CTFE/TFE

COPOLYMERS PER MSC-PA-D-67-13, CATAGORY A

Copolymer Composition

Mole Ratio CTFE/TFE Test Results*

100/0 B-

85/15 B-

75/25 B

70/30 SE in 3"

65/35 SE in 3"

60/40 SE in 3"

50/50 SB in 2-3/4"

45/55 SE in 3"

40/60 SE in 3"

30/70 B-

0/100 B-

*B: Burns more than 3"

*B-: 5" Length of film specimen completely burnt

*SE. Self-extinguishing
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TABLE VI

TGA DATA ON DIFFERENT POLYMERS

%Weight L ss in %Weight Loss in

Polymer , LOI* NASA Rating N2 at 425.cC 0, at 4250 C

CTFE/Ethylene Copolymer 60 3 47 75

CTFE/TFE Copolymer 95 1 70 16

PCTFE >95 4 91 99

PTFE 95 2 20 (at 550 0C) 35 (at 550C)

(TGA run on programmed heating rate of 200/minute)

*LOI: Limiting oxygen Index
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TABLE VII

SUMMARY DATA

RAM-EXTRUDER SPINNING TRIALS ON C/T POLYMERS

Sample No. Composition M.pt Melt Index
CTFE/TRE (0 C) 3000 /216 gqms EXTRUSION RESULTS

C/T-13 50/50 240 0.61 O.K. at 310oC/0.6 gpm
(Slight oranae- eel melt

fractare .

C/T-20 50/50 240 1.60 O.K. at 3100 C, 400 sec- 1

C/T-16 50/50 240 4.0 O.K. at 3100C/0.9 gpm; Cold-
drawn 5:1, could not draw
hot. UTS = 0.52 gpd; UE
16.2%; TM = 11.6 gpd.

C/T-14 50/50 237 15.0 Free-flow at 3000 C.

C/T-26 55/54 232 0.50 M.F. at 320 0 C/0.5 gpm.

C/T-22 55/54 232 1.60 O.K. at 310 0 C/0.9 gpm; Cold
drawn 5.2:1; Could not draw
hot. UTS + 0.66 gpd; UE:
28.7%; TM = 9.2 gpd

C/T-27 60/40 231 0.50 M.F. at 310-330 C/0.5 gpm

C/T-30 45/55 247 0.35 M.F. at 320 C/0.5 gpm.

C/T-31 45/55 247 0.20 Severe M.F. at 3250-3500C

(23)



TABLE VII (contd.)

Sample No. Composition .pt Melt Index
CTFE/TFE ( C) 300oC/2160- gms EXTRUSION RESULTS

C/T-32 45/55 245 0.70/ Could be extruded and
melt-drawn; could not
be ori nted at 250C
to 150 C

C/T-33 45/55 249 1.5/ Could be extruded and
melt drawn; could not
be oriented at 25 C
to 1500 C

C/T-36 55/45 234 0.80/
Orange-peel melt fract
ure.

C/T-37 50/50 240 1.15/ Could be extruded and
melt drawn 10:1 and
orisnted 4.8:1 at
100 C. UTS = 0.82 gpd.

C/T-38 55/45 324 0.65/ Melt fracture
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TABLE VIIIa

Programmed Thermal Gravimetric Analysis of

CTFE/TFE Copolymers in Nitrogen

(Heating Rate = 10 /min.)

Copolymer Composition Melt % Weight Loss

Index 350 0 C 400uC 425-C 450C 475°C 5000C

Mole % CTFE Mole /o TFE

60 40 0.5 -- 2 12 65 100 100

50 50 0.6 -- 0.5 7 45 100 100

1.6 -- 1.2 8 54 100 100

45 55 0.2 0.2 1 6 42 99.8 100

0.35 -- 1.2 6.5 45.5 100 100

50 50 0.5(Filament) -- 5.5 46 100 100
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TABLE VIII B

Programmed Thermal Gravimetric Analysis of

CTFE/TFE Copolymers in Air

(Heating Rate = 100/ min.)

Copolymer Composition Melt % Weight Loss

Mole % CTFE Mole % TFE Index 350PC 4000 C 4250 C 450oC 4750 C 5000C

60 40 0.5 -- 1.8 10 65 99.7 99.8

50 50 0.6 0.3 1.8 10.5 63 100 100

1.6 0.5 2.0 9.5 54.5 100 100

4.0 0.3 1.5 7 50 100 100

45 55 0.2 1 1.5 6 46.5 100 100

0.35 1 1.5 4.5 37 100 100

50 50 0.5(Filament) 0.5 1.5 8.5 61.5 100 100
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TABLE IX A

isothermal Thermal Gravimetric Analysis of

CTFE/TFE Copolymers in Nitrogen

Copolymer Composition Melt % Weight Loss

Mole % CTFE Mole O TFE Index At 310,C At 350PC
5 Min. 10 Min 5 Min. 1 Min.

60 40 0.5 0.6 0.6 0.6 0.8

50 50 0.6 0.6 1.0 0.8 1.0

1.6 0.6 0.8

4.0 0.6 0.7

45 55 0.2 1.0 1.0 0.8 0.8

0.35 1.0 1.2

(27)



TABLE IX B

Isothermal Thermal Gravimetc Analysis of

CTFE/TFE Copolymers in Air

Copolymer Compostion Melt % Weight Loss

Mole % CTFE Mole %.TFE Index At 310oC At 320°C At 350C

5 Min. 10 Min 5 Min. 10 Min 5 Min. 10 Min.

60 40 0.5 -- -- 1.0 .0.8 0.95 0.75

50 50 0.6 0.6 0.6 0.6 0.6 0.6 0.75

4.0 0.9 0.7

45 55 0.2 0.4 0.4 0.75 0.75 0.8 1.0

0.35 0.6 0.6

(28)



TABLE X

Extension Thermomechemical Analysis

Data for 50/50 CTFE/TFE Copolymer Filament

Run No. %Longitudinal Change*

25-40.C 40-950C 95-150°C Overall 25-15

1 0.18 (E) 0.22(S) 0.42(E) 0.38(E)

2 0.55 (E) 1.13 (E) 0.59(E) 2.3 (E)

3 0.34 (E) 0.22(S) 0.53(E) 0.65(E)

4 0.14 (E) 0.03(S) 0.63(E) 0.74(E)

5 0.31 (E) 0.09(S) 0.51(E) 0.73(E)

6 0.05 (E) 0.16(S) 0.48(E) 0.37(E)

* E: Elongation

S: Shrinkage
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Temp. Zone 1 .. Temp. Zone 2 Temp. 10

Zone

1) Hopper - N Flush, Water Cooled 4

2) Barrel - C rome Plated, 1/2" Dia., L/D = 22:1
3) Screw - Chrome Plated, Gradual Transition
4) Breaker Plate + Filter - 80 Mesh Hastalloy 'C' Screen
5) Block - 416 SS Chrome Plated
6) Pressure Gauges - 0-5000 PSI Hastalloy 'C' Diaphram
7) Metering Pump - Zenith Hastalloy 'C'
8) Pump Drive Shaft
9) Pressure Gauges 0-5000 PSI Hastalloy 'C' Diaphram

10) Screen Filter - 3-100 Mesh, 2-80 Mesh Hastalloy 'C'
11) Dispersion Plate - 416 SS, Chrome Plated
12) Pressure Gauges - 0-5000 PSI Hastalloy 'C' Diaphram
13) Pot - 416 SS Chrome Plated
14) Die - 416 SS

Figure 1 EXTRUDER ASSEMBLY
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Figure 2
N2 Flush
2 YARN TAKE-UP AND QUENCH ASSEMBLY

Schematic

Reifenhauser Extruder
Assembly. See Figure 1

Heated Sleeve with Baffle

Quench Stack (cross flow)

Total Yarn Drop 14'
(from die to first godet roll)

Lube Roll Take-up Unit

Air Godet

Take-up Tension and
Speed Control
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Reifenhauser Extruder
Assembly

Take-up
Unit

Nip Rolls
Water Quench Bath

Tension Arm

Figure 3 MONOFIL QUENCHING ASSEMBLY AND TAKE-UP ASSEMBLY
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Tension Gate

Pre Tensioning
Rolls

Feed Godet

Heated Pin

Block Heater

Undrawn Fiber

Take-Up Godet

Take-Up Unit

Tension Arm

Figure 4 AIR DRAWING ASSEMBLY
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Roller Guides

Take-Up
Tension Gate Unit

Take-Up
Undrawn Monofil Feed Godet Godet

OTension
Oil Bath Oil Wash Arm

Bath

Figure 5 OIL DRAWING ASSEMBLY
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PHASE II

A. Objectives
The identification of the ECS copolymer as an ideal candidate
for eventual conversion into flame resistant fibrous
materials led to the following objectives for Phase II:

1. Development of a feasible polymerization system for the
ECS copolymer.

2. Development of a feasible polymer processing system.

3. Characterization and evaluation of selected copolymers.

B. Technical Approach
As described earlier the ECS copolymer of Phase I were pro-
duced by a bulk polymerization process. It is well known
that high concentrations of uninhibited TFE, which must exist
in a bulk polymerization, can spontaneously react, resulting
in a high energy level explosion. Therefore this polymeriz-
ation technique could only be safely used at the test tube
level. Production of the ECS copolymer on a practical scale

required the development of an alternate polymerization
process.

The granular polymerization system, described below, was selected
as the candidate with the highest probability of success. This
decision was based on experience with other fluoropolymers, de-
gree of operating safety and the relatively high level of possible
control over key polymer variables. Because of subsequent
success with this approach, other techniques, such as emulsion
polymerization, were not experimentally evaluated.

Granular polymerization products must be washed (to remove
catalyst salts), dried and possibly milled to a uniform
particle size. The technology for conducting these unit

operations exists. However some modifications have generally
been required for each specific plastic. The reasons for
this include varying impurity levels and differences in the
physical structure of polymer solids exiting from the poly-
merization reactors.

Processing efforts, in the case of ECS, were concentrated on
thoroughly washing and drying the polymer so that clean and
bubble-free test specimens could be prepared.

Characterization of the ECS copolymer consisted of measuring
key properties in the categories of physical, thermal, mechanical,
electrical and chemical resistance testing. The effect of co-
polymer composition was determined by testing 40, 50, and 60
mol % CTFE copolymers. Other compositions were not evaluated
since they failed to pass the NASA flame resistance test. The
effect of molecular weight was determined by testing relatively
low and high molecular weight copolymers.
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C. Polymerization Research

The System
All of the runs in Phase II were made in a three gallon,
jacketed, glass-lined reactor equipped with a turbine
agitator. The glass lining is preferred over metals be-
cause of its superior resistance to corrosion and polymer
build-up. Reactor temperature was monitored by thermo-
couples located in a thermowell suspended inside the
reactor. The flow rate of brine, through the reactor jacket,
was automatically controlled so as to maintain a constant
reaction temperature. A pressure control system was also
employed to insure a constant reaction pressure.

A turbine agitator, coated with CM-1 fluoropolymer, was
centrally located to provide proper fluid mixing. CM-1, an
Allied fluoropolymer, was used because of its resistance to
corrosion, abrasion and polymer build-up.

A separate 9 gallon pressure vessel was used as a feed tank.
Feed comonomer mixtures were prepared by adding CTFE and then
TFE (gases) through a mixing nozzle. Gas sampling points were
located at both the reactor vapor space and the feed tank.

Catalyst solutions were added to the reactor during a run
(when required) by means of a positive displacement, constant
rate pump.

General Procedure
The reactor was charged with 5 liters of deionized water,
evacuated, purged with nitrogen and heated to the reaction
temperature. CTFE, TFE and nitrogen were then added to the
specified partial pressures. The feed tank was prepared as
described above. Catalyst solutions were then added and
the run was initiated. The run was controlled at constant
temperature, pressure and agitation rate until 2-3 pounds of
copolymer had been produced. This was determined by recording
the decrease in comonomer supply in the feed tank.

At the end of a run the reactor was vented and purged with
nitrogen. The product was discharged as a white, solid,
granular powder. This powder was separated from the reactor
water, washed and dried.

Agitation
The rate controlling factor, in polymerizations of this type,
is the rate at which vapor space monomer can be transferred
to the surface of the growing polymer particles (reaction site).
The principal resistance to mass transfer is the bulk aqueous
phase. This resistance can be minimized by operating at an
agitation rate such that the aqueous phase is in a state of
fully developed turbulent flow.

(36)



The Reynolds number, Re = D2N is a measure of the degree of

u 4

tubulence. Fully developed turbulent flow occurs at Re 10

Th7 ECS reactor, operated at 500 RPM, resulted 
in a Re = 1.8 x

10 . Thus fully developed turbulent flow was assured.

Catalyst System
The catalyst system consisted of potassium persulgate and

sodium bisulfite. At reaction temperatures of 55 C or higher,
free radicals were generated by thermal decomposition of potassium

persulfate at a rate sufficient to maintain an adequate rate 
of

polymerization without the need of a reducing agent. 
In this

case the potassium persulfate solution was introduced into the

reactor after the reactor had been charged and was up to tem-

perature.

At reaction temperatures below 55 C, the decomposition of the

potassium persulfate was induced with sodium bisulfite 
(a redox

system). In this case the potassium persulfate was dissolved

in the water first charged to the reactor and the sodium bi-

sulfite solution was introduced into the reactor after the re-

actor. had been completely charged. This solution was continuously

pumped into the reactor at a very slow rate during the 
reaction.

Several catalyst decomposition mechanisms have been proposed.

The mechanism presented below has been considered to be the most

likely (based on the results of previous internal research pro-

grams).

Potassium Persulfate - Only

K2S208 2K + S208 =

1  2
S 20 = - ) 2 SO 47 - 2HSO 4- 

+ 2HO*

2HO - H202 -HO HO2* + H20

By this mechanism the most probable dominating free radical is

HO 2 * and the most likely polymer chain end group is -COOH.

Persulfate + Bisulfite

Na2S205 - 2Na + S205

S205 = + H20 ; 2HSO 3
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2S208 = + 2HSO 3  2 2S04 + other species; as before

2H20

2S04- 220 4 HO 2 + H20.

The controlling rate constants, K and K2 are temperature

dependent. At the same temperatue, K J K The rate of

copolymerization, under otherwise consiant onditions, will be

proportional to the rate of free radical generation. There-

fore, as stated above, the persulfate-bisulfite catalyst system
was required to achieve 8he desired ECS copolymerization rate

at temperatures below 55 C. Constantly adding the bisulfite

resulted in maximum control over the radical generation rate.

Reactivity Ratio
The copolymerization mechanism was assumed to be similar to

that given in many textbooks (presented below for review

purposes).

I - 2R- (1)

R. + M1 - MI .  (2a)

R- + M 2 - M2* (2b)

MI. + M1 - MI.  (3a)

M1. + M2 2 M2  
(3b)

M2* + i ) M* (3c)

M2. + M2 -> M (3d)

Mn * + M Mn + m (4)
n m n+m

Step (1) described the catalyst decomposition. In step (2)

polymer radicals M - and M * were formed. Step (3) showed

the various possib e combigations during the propagation or

polymer chain growth sequence. Step (4) represented chain

termination resulting in "dead polymer".

In a given copolymer system the reactivity ratios described

the preference of a chain radical (M -) for adding to a

molecular of the same species (M1 ) v rsus adding to a molecule

of the second species (M ). The larger the numerical value

of the ratio, the greatei the tendency to add to the same

species.

In the ECS reactor comonomers were present as a vapor space

mixture, as gases adsorbed on the solid polymer surface and

to a negligible extent, as gases dissolved in the water.

Reactor pressure was maintained constant by continuously
adding a comonomer mixture, from an external feed tank, to
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replace reactor comonomer consumed by polymerization. Under

steady-state conditions, therefore, the copolymer composition

equalled the feed comonomer composition.

The reactivity ratios related the copolymer composition to

the reactor vapor space composition. Thus the vapor space

was adjusted to a specific equilibrium (steady-state) composi-

tion at the start of a run. Only in this manner could a homo-

geneous copolymer be produced. These parameters were mithema-

tically related by the classical copolymer equation:

r 1 M21- +-
ml M1 M2  M2
m2  M2  M M1r -- +--

2 M2  M2

where m1 and m2 were mole fractions of CTFE and TFE, respec-

tively, in the copolymer, M1 and M2 were mole fractions of.

CTFE and TFE, respectively, in the reactor vapor phase and

r and r2 were the reactivity ratios of CTFE and TFE respec-

tively. Substituting Y for m I and X for M1 and re-arranging

m2  M2

terms resulted in the following equation:

x(1 - Y) = r 2 + r 2

This was a form of the straight line equation. Thus, the

straight line graph of the equation gave a slope which was

r1 and a Y intercept which was r2.

Suitable coordinates for this calculation were obtained by

selecting run conditions that produced copolyEers of 25, 50,

and 75 mole % CTFE. The runs were made at 35 C, employing

the potassium persulfate and sodium bisulfite catalyst

system. Reactor vapor space compositions were selected to

produce copolymers of approximately the desired compositions.

The comonomers added continuously during the reactions were

mixed exactly to the desired copolymer compositions. At regular

intervals during the copolymerizations the reactor vapor phase

was analyzed. After several "turn-overs" the composition of the

vapor phase remained constant. By material balance the final

equilibrium vapor space composition was that required to pro-

duce the homogeneous copolymer of the composition represented

by the continuously added premixed supply of comonomers. The

results of these runs and calculations of the coordinates

were shown in Table XI. Figure 6 showed the straight line

plot of the coordinates giving an rl (CTFE) of 3.2 and r2 (TFE)

of 0.82.
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Copolymer Composition Curve
From the values of r and r2 could be constructed a homogeneous
copolymer compositioA curve, as shown in Figure 7 , which pro-
vided the required vapor space composition for any copolymer

composition. This curve was constructed by substituting r
and r2 in the following form of the basic copolymer equation.

A(r A + 1-A)
a = -- 2

r2 (1-2A + A ) + A (2 + rlA-2A)

where a = mole fraction of CTFE in the copolymer:

A = mole fraction of CTFE in the vapor space.

Polymerization Rates
Using the copolymer composition curve, reaction conditions
were set-up to produce homogeneous copolymers of various

CTFE compositions at temperatures of 35 C to 60 C. Fixed
polymerization conditions were:

Reactor Size = 3 gallons

Water = 5 liters

Agitation Rate = 500 RPM

Nitrogen Blanket = 65 PSIA

Total Pressure = 165 PSIA

Figure 8 represented a typical reaction rate curve for a run

at 450C to produce a 50% copolymer. The constantly decreasing

reaction rate (from a maximum at the start) was characteristic
of all ECS runs, and was anticipated for this system.

The reaction rates listed in Table )XIappeared to be (generally)
less than the target minimum of 0.20 pounds/hour/gallon. These
overall reaction rates, however, included the last portions of
the polymerizations, in which the rates were quite low. As
indicated on Figure 8, a more economical run time would have
been 10 hours with an overall rate of 0.265 pounds/hour/gallon.

Basis Copolymer Data
The crystalline melting point of the ECS copolymers was de-
termined as a function of composition (Figure 9). The curve
endpoints represented the melting points of the homopolymers,
PTFE (327 C) and PCTFE (212 C). The melt index curve
(molecular weight) for 50 mol % homogeneous copolymers, produced

over a wide temperature range, was also determined (Figure 10).
These runs were also made at different catalyst levels. The

results indicated that the molecular weight was a function
mainly of the reaction temperature. Thus, a melt index selected

from the range of about 0.3 to about 15 could be produced simply

by selecting the appropriate reaction temperature.
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Molecular Weight Distribution

The problems encountered in Phase I of this 
project were attri-

buted, in part, to a relatively broad molecular weight 
distri-

bution. This resulted from a varying free radical flux as well

as a non-constant comonomer feed composition. With the catalyst

systems and procedures employed in Phase II a reasonably con-

stant free radical flux was generated. This along with constant

comonomer vapor space and feed compositions, yielded products

with relatively narrow molecular weight distributions.

D. Polymer Processing Research

Washing
The ECS copolymers were discharged from the polymerizer 

as

fine white powde contaminated with catalyst residues (inorganic

salts). Complete removal of these residues was required in

order that clean test specimens might be molded. Preliminary

tests indicated that this objective would be best accomplished

by employing a centrifuge into which deionized water was con-

stantly sprayed, and removed. The centrifuge, containing a

polypropylene filter cloth, was operated at 700 
RPM. Room

temperature deionized water was continuously added 
at 10 gallons/

hour. The conductivity of the exit water was periodically

tested. A batch ( 3 pounds of polymer) wash was ended when

the conductivity rached 1 part electotype per million parts

of water.

Drying
All wet copolymers were transferred to glass trays a8 d dried

in an air circulating oven for up to 16 hours at 125 C. This

procedure successfully produced bubble-free 
test specimens

(bubbles in molded plaques generally indicated that the 
resin

contained trace amounts of water).

E. ECS Engineering Properties
Critical engineering properties of selected ECS copolymers
were measured. This data along with published values for the

PCTFE and PTFE homopolymers were summarized in Table XIII.

Test Candidates (Table XIIIA)
Test candidates included copolymers containing 40, 50, and 60

mol % CTFE. Copolymers, within this range, passed the NASA

flammability test. Copolymers containing 50 mol % CTFE and

of significantly differently molecular weights (Blends 1 and

4) were also evaluated.

The melt index of each of the candidates were determined under

the same test conditions (275 C, 2160 gm load). The melt index

was measured on samples extruded after a residence time of 
6

minutes at 275 0 C. An indication of melt stability was obtained

by measuring the melt index of the same material 
after a re-

sidence time of 30 minutes. Resin degradation would result

in a color change (from clear to black) and a melt index number
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significantly higher than the initial value (e.g. 6.0 vs. 2.0).
All of the ECS candidates passed this test. Itshould be noted
that these copolymers did not contain additives or stabilizers
and that the melt index test error was + 0.40.

Mechanical Properties (Table XIIIB)
The mechanical properties were generally lower than expected.
It was concluded that all of the candidates were of relatively
low molecular weight. Copolymers of significantly higher
molecular weight (produced in Phase I) have exhibited tensile
strengths as high as 3600 PSI and elongations as high as 370%.
However, these resins could not be converted into fibers by
the techniques discussed earlier. The dynamic mechanical
spectra of the ECS copolymers were compared to PTFE and PCTFE
(Figure 11). The shear modulus of PCTFE was signficantly higher
than those for either PTFE or the four ECS blends below 400 C.
Above 400 C the values were comparable. These curves did not
show any appreciable effects of either changes in composition or
molecular weight (within the regions explored) for the ECS
copolymers.

Thermal Properties (Table XIIIC)
The relatively low heat deflection temperatures were also attri-
buted to low molecular weight copolymers. The TGA curves
(Figure 12) showed 8hat the weight loss over the temperature
range of 3750 to 475 C, decreased with increasing TFE co8 tent.

All of the candidates exhibited no weight loss up to 350 C.
A sample of Blend 1 was heated in a stainless steel container
(inside a tube furnace) to 475 C under vacuum. The pyrolysis
products, after trapping in liquid nitrogen, consisted of
29 weight % gases and 71 weight % of low molecular weight
waxes. The gases consisted of 10% TFE, 55% CTFE and 35% (by
weight) of unknown compounds with higher boiling points than
CTFE. The waxes contained a --CF = CF 2 group. Gas chromato-
graphic and infra-red techniques were used for the gas and wax
analysis. The observation of both monomer liberation and wax
formation indicated that the degradation mechanism consisted
of simultaneous chain unzipping and random chain cleavage.

Electrical Properties (Table XIIID)
The electrical properties of the ECS candidates were generally
closer to PCTFE than PTFE. Changing the copolymer composition
from 40 to 60 mol % CTFE did not significantly alter the
electrical properties.

Chemical Resistancb (Table XIIIE)
The candidates were immersed in solutions of the listed inor-
ganic acids, bases and organic solvents for 12 days at room
temperature. As expected the ECS copolymers were not attacked
by the acids and bases and were only slightly swollen by tri-
chloroethylene and ethyl acetate.
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TABLE XI

Run 1 2 3 4

Vapor Space - Composition

- Mole % CTFE at steady state, M 1  29 29 18 56

- Mole % TFE at steady state, M2  71 71 82 44

Copolymer Composition
(Monomer Added)
- Mole % CTFE, m1  44 45 25 75

- Mole % TFE, m2  56 55 75 25

M1 ,x 0.408 0.408 0.219 1.275

M

m , y 0.786 0.818 0.333 3.0

m 2

x 0.519 0.498 0.657 0.424

y

1-y 0.214 0.182 0.667 -2

x (1-y), Y 0.111 0.096 0.438 -0.848

y

X 2 , -0.212 -0.203 -0.144 -0.54

y
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TABLE XII
POLYMERIZATION RUN DATA

Run Tgmp. CTFE (mol % in.) Total Catalyst (qms/1 H20) Product Overall Reaction Rate

No. (LC) Reactor Feed KPS NBS (gms) (lbs./hour/gallon)

21 35 30 45 4.79 1.69 795 0.054

22 35 30 45 9.54 1.68 795 0.055

23 35 30 48 14.10 2.42 722 0.050

24 35 20 25 14.10 2.42 1620 0.106

25 35 57 75 14.10 2.42 1100 0.037

26 45 30 50 4.79 3.38 2170 0.210

27 45 30 50 4.79 4.20 960 0.100

28 45 30 50 7.18 6.30 1420 0.125

29 50 30 50 3.76 3.30 1020 0.090

30 50 30 40 3.76 3.30 1380 0.165

31 50 30 50 3.76 3.30 1275 0.178

32 45 30 50 4.80 4.20 1350 0.141

33 60 30 50 4.0 0.0 1545 0.117

34 60 30 50 4.0 0.0 1400 0.112

35 55 30 50 8.53 0.0 1410 0.112

36 55 30 50 8.53 0.0 1220 0.098

37 50 40 60 3.76 3.30 1680 0.156

38 50 40 60 3.76 3.30 1590 0.167

39 50 25 40 3.76 3.30 1830 0.139

40 50 25 40 3.76 3.30 1700 0.135

41 35 30 50 4.79 4.20 1050 0.110
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TABLE XIIIA
ECS ENGINEERING PROPERTIES - TEST CANDIDATES

Blend No.
Item 1 2 3 4

1. Polymerization Temp., 
0 C 50 50 50 35

2. Composition, Mol % CTFE 50.0 60.0 40.0 50.0

3. Melting Point, oC 244.0 222.0 254.0 237.0

4. Melt Index, 2750 C,
2160 gm load 2.2 12.0 1.5 0.1

5. Melt Index Stability
(MI at 30 min.) 3.0 15.0 2.5 0.2

(1)Blended Runs = 29 37 39 41

(see Table ) 30 38 40
31
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TABLE XIIIB
ECS ENGINEERING PROPERTIES - MECHANICAL

ASTM Blend No.
Test No. 1 2 3 4 PCTFE PTFE

1. Specific Gravity 792 2.170 2.171 2.181 2.167 2.1-2.2 2.14-2.20

2. Tensile Str.,PSI 1708

- RooT Temp. 1,950 477 1,967 2,010 5,000 4,500
- 150 C 396 600 440 330 1,300 ---

3. Elongation, % 1708

- Room Temp. 25 3 13 17 150 300

- 150 0 C 14 5 10 41 750 ---

4. Modulus, PSI 1708

- Room Temp. 87,700 31,500 53,600 58,700 180,000 100,000

- 150oC 9,110 25,600 12,200 10,220 --- ---

5. Compression
Strength, PSI 695 2,530 --- 2,150 --- 6,000 1,700

6. Flexural Yield does not

Strength, PSI 790 3,010 1,230 1,640 --- 9,300 break

7. Flexural_ odulus,
PSI x 10 790 1.21 3.81 0.90 --- 2.20 1.10

8. Impact Strength
(notched Izod),
ft. lbs./in. 256

- Room Temp. 0.34 0.34 0.36 0.37 2.6 3.0
- -40 0 C 0.32 0.31 0.32 0.30 --- ---

9. Tensile Impagt,
ft. lbs./in. 1822 23 8 66 73 275 350

10. Hardness, R 785 29 --- 104 33 95 60 (D)

11. Abrasion Resist-
ance, cc less/64
cycles 1242 0.869 --- 0.642 ---

(1)All tests at room temperature except where noted.
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TABLE XIIIC
ECS ENGINEERING PROPERTIES - THERMAL

ASTM Blend No.
Test No. 1 2 3 PCTFE PTFE

1. Heat Deflectin
Temperature, C 648

- 264 PSI 58 --- 55 -

- 66 PSI 132 --- 112 258 250

2. TGA - % ght

Loss at:

- 3500C 0 0 0

- 375 C 0.5 0.5 1.0

- 4000 C 1.5 4.5 2.0

- 425 C 14.5 30.5 8.5

- 450 0 C 77.5 87.0 55.0

- 475 0 C
.  99.5 99.5 99.0

- 5000C 99.5 100.0 100.0

(1)100 C/min. in air.
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TABLE XIIID
ECS ENGINEERING PROPERTIES - ELECTRICAL

ASTM Blend No.
Test No. 1 2 3 PCTFE PTFE

1. Dielectric Str. 149

- Short-Time 450 439 463 550 480
- Step-by-Step 419 --- --- 500 430

2. Dielectric
Constant 150

- 60 3Cycles 2.55 2.71 2.57 2.52 2.10
- 106 Cycles 2.54 2.66 2.55 2.50 2.10
- 10 Cycles 2.42 2.49 2.44 2.40 2.10

3. Dissipation
Factor 150

- 60 3Cycles 0.0033 0.009 0.007 0.0012 0.002
- 106 Cycles 0.0044 0.010 0.006 0.0250 0.002
- 10 Cycles 0.0167 0.016 0.015 0.0130 0.002

4. Arc Resistance,
sec. 495 (1) (1) (1) (1) (1)

(1)Does not track or fail.
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TABLE XIIIE
ECS ENGINEERING PROPERTIES - CHEMICAL RESISTANCE

ASTM Blend No.
Test No. 1 2 3 PCTFE PTFE

1. Weight Change (%) after
12 days at room temp-
erature in: 543
a) H SO4 , 96% -0.007 -0.002 0.0 --- 0.0
b) HCj, 37% -0.003 +0.004 +0.002 0.0 0.0
c) HNO , 90% +0.160 +0.033 +0.057 0.0 0.0
d) NaOA, 60% -0.015 +0.118 +0.020 0.0 0.0
e) KOH, 60% -0.012 +0.019 -0.013 --- 0.0
f) Trichloroethylene +0.230 +0.029 +0.149 +0.020 0.0
g) Benzene +0.060 +0.030 +0.018 +0.600 0.0
h) Acetone +0.100 +0.026 +0.087 +0.500 0.0
i) Kerosene +0.010 +0.008 +0.002 --- 0.0
j) Methanol +0.020 +0.022 +0.035 0.000 0.0
k) Ethyl Acetate +0.170 +0.104 +0.095 +6.00 0.0
1) Water 0.0 -0.004 -0.013 0.0 0.0

2. Tensile Strength,PSI 1708

a) Control 1950
b) H SO , 96% 2040
c) H1, 4 37% 1960
d) HNO , 90%/ 1910
e) NaOA, 60% 1960
f) KOH, 6/0% 1950
g) Trichloroethylene 1910
h) Benzene 1950
i) Acetone 1890
j) Kerosene 2010
k) Methanol 1950
1) Ethyl Acetate 1860

3. Elongation, % 1708

a) Control 25
b) H SO4 , 96% 26
c) HC1, 37% 30
d) HNO , 90% 24
e) NaOA, 60% 12
f) KOH, 60% . 30
g) Trichloroethylene 29
h) Benzene 31
i) Acetone 17
j) Kerosene 26
k) Methanol 28
1) Ethyl Acetate 17
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APPENDIX I

A. Upward Propagation Rate Test of

Category A, MSC-PA-D-67-13
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TEST NO. 1

UPWARD PROPAGATION RATE TEST

PURPOSE
The purpose of this test is to identify spacecraft crewbay
materials which allow the spread of fire.

TEST CONDITIONS - PRESSURES
The pressurized test environment for each material shall be de-
termined from the applicable usage category and vehicle effectivity.
The f~llowing table relates environmental tests conditions to
category and module combinations.

Category Module PSIA Oxygen

A CM 16.5
A LM 6.2
C CM 20.0
C LM 8.7
G CM and LM 16.5
H CM and LM 14.7 PSIA AIR

(unless otherwise
specified)

TEST DISCIPLINE
Each test shall be directed by the cognizant Test Engineer or
his appointed alternate.

The cognizant Test Engineer shall affix this signature to all
test data sheets and verify adequate identification of test
sample.

CRITERIA OF ACCEPTABILITY
Materials shall be self-extinguishing within three inches of the
ignitor.

TEST EQUIPMENT
Test chamber shall have a volume sufficient to provide a minimum
of 12 liters per gram of sample materials. It shall be suitably
constructed and protected to insure safe operation. A window
or viewing port for visual observations shall be included. The
test chamber shall contain inlets for vacuum, an ignition wire,
air, and oxygen. The chamber is to be fully protected against
the possibility of operator injury in the event of explosive
rupture.

Organic materials used in the construction of the chamber such as
gaskets and seals shall be of types which contribute little or no
outgassing to the chamber or which can be pre-outgassed by vacuum
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cycling to a minimal identifiable amount, i.e., less than 10 ppm
pased on the chamber volume. A vertical sample holder shall be
included and positioned within the test chamber.

Pressure Gauqe - A pressure gauge capable of measuring absolute
pressures with an accuracy of + 5 Torr, or a pressure trans-
ducer and recorder with comparable capability shall be used.
These gauges must cover the pressure range of the required test.

Oxygen Supply - The oxygen shall be commercially available
oxygen conforming to specification MIL-O-27210, Type 1. Efficient
and safe equipment shall be used for measuring the flow and
for transferring the oxygen to the test chamber.

Sample Holder - The sample holder shall consist of a vertically
mounted steel clamp which overlaps one fourth inch of each side
of a specimen along the full five inch length of the sample,
leaving a two inch wide by five inch long eposed center section.

Ignition Source - Ignition of the sample shall be accomplished
by employing a regulated energy flux. The ignition, source
shall be a standard silicone ignitor placed within 0.15 - 0.05
inch of the bottom edge of the sample. Both wire and paper
shall contact with sample. The power supply to the wire
shall provide sufficient voltage, controlled by means of a
variable transformer, to ignite the silicone.

Propagation Rate Indicators - Motion Pictures - Motion
picture records shall be kept of each burning test where
appropriate.

In lieu of motion pictures, supporting data from a vertical
bank of thermocouple indicators combined with a recorder may
be used. However, a precision of at least five percent shall
be obtained with the measuring device. If the thermocouples
are used a minimum of four thermocouples shall be installed.
Loss of more than one thermocouple or loss of either end
point thermocouple shall invalidate the test.

SAMPLE PREPARATION
All material specimens shall be free of cuts, abrasions, or other
flaws as determined by close visual inspection without magnifica-
tion. Before the test the samples shall be cleaned by brushing or
by flowing an inert gas over them to remove loose surface contamina-
tion.

Films and fabrics shall be tested in their "as received" condition.
Specimens shall be cut out in the form of rectangles two and one
half inches wide and five inches long. Foams or other thick
materials shall be used in the applied thickness and be two and
one half inches wide and five inches long.
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Primers, coating materials, and paints shall be applied on the sub-
strate material actually used in the spacecraft whenever possible.
The coatings shall be applied in a thickness equivalent to normal
usage and post cured in accordance with prescribed manufacturing
practices.

Materials and components which will be used in an irregular size or
shape shall be tested in the "as purchased" configuration. They
shall be attached to the sample holder in such manner as not to
affect the test results.

PRETEST PROCEDURE

Verify that all test equipment is in current calibration.

Verify oxygen certification (MIL-O-27210, Type 1)

Verify material identification by one of the following:

- Manufacturer's Certification
- NASA Certification
- Contractor Certification
- Definite Identification not Available

Prepare three samples per appropriate paragraph in Section above.

If irregularly shaped samples are tested, described the shapes.

Visually inspect each sample (There shall be no cuts, abrasions
or other flaws).

Clean samples by brushing or by flowing an inert gas to remove
loose surface contamination.

Weight the samples and record the weight.

Record the volume of the test chamber in liters.

Verify that the test chamber has a volume equal to or greater
than 12 liters per gram of sample material.

Mount the sample in the sample holder and verify that the exposed
center section is 2.0 + 0.1 inches wide.

Position sample holder within the chamber.

Place the ignitor horizontially within 0.15 + 0.05" of the sample
at the midpoint of its two inch width at the bottom.

TEST PROCEDURE
Evacuate the chamber to less than five (5) Torr.

Isolate the chamber and monitor pressure for one (1) minute.
Testing mayanot begin until all leaks are corrected. (A leak
is indicated if an increase in pressure of more than (1) Torr
occurs.)
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Pressurize the chamber to the required PSIA with oxygen.

After the chamber has stabilized at the test PSI, 
soak the

samples for 10 minutes.

Verify chamber pressure is the test PSIA and isolate the chamber.

Start Motor Picture Camera and other applicable instruments.

Apply current to ignitor.

Record whether sample is self-extinguishing.

Note combustion characteristics (nature and color of flame, soot,

residue and other pertinent observations).

Identify of the testing organization or agency.

Secure the chamber

REPORTING
Name of the material (generic).

Vendor designation and vendor.

Self extinguishing (yes or no).

Combustion Characteristics - Distance that flame progressed be-

fore extinguishing; flame phenomena and temperature; mass transfer

by dripping, sputtering or sparking; etc.

Rate of pressure rise and final pressure.

Disposition or status, dimension, and size of sample material.

Name and number of test procedure.

Date of test.

Test Number

Identity of the testing organization or agency

Name of test conductor.

Names and signatures of Test Engineers.

(62)


